
Brandon Druschel CSC 466
2/21/19

Project Title:
Peg Solitaire Heuristic Learning Machine

Project Description:

A rule-based Peg Solitaire self-playing machine will be developed using genetic algorithms. The

machine will play a large amount of games using both heuristically as well as randomly

determined moves. The machine will continue this process until it manages to win the game

(get one peg remaining on the board). The machine will be assessed by recording its

performance during each game (i.e. how many pegs were left in the end), which will represent

the fitness metric.

Task Decomposition

1. Global List

Description:

Start by creating a file called pegs.l, which will serve as the

main program. Have a global list called *moves*, which will

serve as the list of all possible moves a player may make on

a triangular board, i.e., any sort of “jumps” that can be

made with a single peg from its original position, over a

neighboring peg, into an empty space.

Create another global list called *board* which lists every

possible coordinate within the triangular board and

whether that has a peg or not, i.e., '(0 0 o)' is the top

corner of the triangle – which is an empty hole, while '(1 0

*)' and '(1 1 *)' represent the first row down – each

with pegs, etc.

Have a reset method which simply sets the *board* list

back to its beginning state.

Demo:
[]> *moves*

(L R UL UR DL DR) ;; left, right, up-left, up-right, down-left, down-right

[]> *board*

… a list representing a whole triangular board in its beginning state.

[]> (reset)

… the board is set back to its beginning state.

Brandon Druschel CSC 466
2/21/19

2. Random Move Generator

Description:

Create a pick method which selects one of the *moves* at random and returns it.

Then, create a play method will take an integer x as input and use the pick method to

generate a randomized list of x number of moves.

Demo:
[]> (pick)
DL

[]> (pick)

R

[]> (pick)

UR
[]> (play 5)

(DL R UR)

[]> (play 12)
(L UL L DR DL R UL DL DR L R UR)

3. Draw a Peg Board

Description:

Have a visualize method which analyzes the *board* list and provides a 2D

visualization of a triangular board in its current state. Let 'o' represent an open space

and let '*' represent a peg.

Demo:
[]> (visualize)

-- GAME BOARD –-
 o

 * *

 * * *

 * * * *

* * * * *

(Assuming the board is at its beginning state)

4. Labels & Constraints

Description:

The rules/constraints of Peg Solitaire are to be determined using several “boolean”-like

methods. The methods should be written in a manner that respects the constraints

given by a triangular board game of Peg Solitaire. The other methods will help with

identifying important elements of the game, such as the neighbor of a particular

position, the position in which a jumped peg would end up, etc.

- pegp takes an element from *moves* and returns t if it has a peg, else nil if it’s an

empty hole

Brandon Druschel CSC 466
2/21/19

- neighbor takes a *board* position and a *moves* element, and returns the position

where the jumped peg would be sitting. I.e., the neighboring peg.

- jump takes a *board* position and a *moves* element, and returns the position where

the peg would end up, depending on the given move.

- jumpp takes a *board* positon and an element from *moves*, returning t if a free space

is available in the position the peg jumps to.

- count looks at the *board* and returns how many pegs are left

Demo:
[]> (pegp ‘(0 0 o))

NIL

[]> (pegp ‘(1 0 *))

T

[]> (neighbor ‘(0 0 o) DR)

(1 1 *)

[]> (jump ‘(2 0 *) UR)

(0 0 o)

[]> (jumpp ‘(0 0 o) DR)

NIL

[]> (jumpp ‘(2 0 *) UR)

T

[]> (count)

14  Assuming the board is at its beginning state.

5. Determining a Valid Move

Description:

The validate method takes a spot from the *board* and an element from *moves* and

determines if the such a move can be done.

I.e. on a starting board, (validate ‘(2 0 *) ur) is an acceptable move (will return 't')

since:

- (2 0 *) actually exists within the *board*

- (2 0 *) contains a peg

- The move UR leads you to an empty hole; (0 0 o)

- There is a peg present between the two spots; (1 0 *)

If any one of these conditions are violated in some way, then the move is deemed

'invalid' (return NIL).

Demo:
[]> (validate ‘(0 0 o) DR)

NIL

[]> (validate ‘(2 0 *) UR)

T

Brandon Druschel CSC 466
2/21/19

6. Make Your Move

Description:

It seems we’re finally ready to create an actual move method. This method will take a

position from the *board* and a *moves* element and, assuming the move is legal,

apply the move to the *board*. Thus, the state of the *board* will be modified according

to the move that is made; the peg will move from its starting position to the end

position, and the neighboring peg will be removed from the game board.

Now, you’ll want to update your play method to pick a random move and a random

spot on the *board* to apply it to – if the move is illegal, run the method again. You’re

also encouraged to write a separate play method which takes no parameters, and forces

more moves into the play until no remaining moves exist.

Demo:
[]> (visualize)

-- GAME BOARD –-
 o

 * *

 * * *

 * * * *

* * * * *

[]> (move ‘(2 0 *) UR)

NIL

[]> (visualize)

-- GAME BOARD –-
 *

 o *

 o * *

 * * * *

* * * * *

[]> (play 3)

(((2 0 *) UR) ((3 2 *) UL) ((3 0 *) R))

7. State of the Game

Description:

The last step in having a playable game of Peg Solitaire involves determining the end

states of the game.

Write a method called goalp which determines whether the goal state (only one peg

remaining) has been reached.

The last method, failp, which scans the remaining pegs on the *board* and determines

whether there are any possible moves left. (Hint: Use the validate method)

Demo:

Brandon Druschel CSC 466
2/21/19

[]> (visualize)

-- GAME BOARD –-
 o

 * *

 * * *

 * * * *

* * * * *

[]> (goalp)

NIL

...

[]> (visualize)

-- GAME BOARD –-
 o

 o o

 o o o

 * o o o

o o o o o

[]> (goalp)

T

...

[]> (visualize)

-- GAME BOARD –-
 *

 o o

 o o *

 o o o o

o o o * o

[]> (failp)

T

...

[]> (visualize)

-- GAME BOARD –-
 *

 * o

 o o *

 o o o o

o o * * o

[] (failp)

NIL

8. Mutation

Description:

To begin the evolutionary process we will need a method to mutate the play list. The

mutation method will accomplish this by replacing a random element of play with a

different move, then changing any remaining moves afterwards that may no longer be

legal.

Demo:

Brandon Druschel CSC 466
2/21/19

[]> (setf p (play 5))

(((2 0 *) UR) ((3 2 *) UL) ((3 0 *) R) ((0 0 *) DL) ((3 3 *) L))

[]> (mutate p)

(((2 0 *) UR) ((3 2 *) UL) ((3 0 *) R) ((4 3 *) UL) ((3 3 *) L))

9. Crossover

Description:

We will need a method to crossover two sets of plays. The crossover method will

construct a string consisting of the first ‘n’ elements from one play followed by a

randomly selected move from the other play, with the last (*length* - n) moves

“reshuffled” to abide by the rules of the games.

Demo:
[]> (setf m (play 5))

(((2 0 *) UR) ((3 2 *) UL) ((3 0 *) R) ((0 0 *) DL) ((3 3 *) L))

[]> (setf f (play 5))

(((2 2 *) UL) ((2 0 *) R) ((4 1 *) UR) ((0 0 *) DL) ((3 3 *) UL))

[]> (crossover m f)

(((2 0 *) UR) ((3 2 *) UL) ((4 1 *) UR) ((0 0 *) DL) ((1 1 *) DL))

;; In this demo, the 3rd move of ‘f’ is mutated into the 3rd move of ‘m’, with

;; the last move in ‘m’ reshuffled to a legal move

10. Fitness Metric

Description:

A simple fitness metric will be used to represent how well the machine performs in a

game by counting the amount of remaining pegs on the board.

Demo:
[]> (setf x (play))

(((2 0 *) UR) ((3 2 *) UL) ((4 1 *) UR) ((0 0 *) DL) ((1 1 *) DL) ((3 0 *) UR

((3 3 *) UL) ((4 2 *) UL) ((4 4 *) L) ((2 0 *) UR) ((0 0 *) DR))

[]> (fitness x)

3

11. Individual Class

Description:

Within the framework of GA computation lies the ‘individuals’. Here you will model the

individual class and its accompanying methods using Task 6 of the RBG GA as a

reference. In this case, the individual class will have play, fitness, and number as its

variables.

12. Population Class

Description:

Brandon Druschel CSC 466
2/21/19

Another element of the GA framework is the ‘population’ class. Here you will model the

population class using Task 7 of the RBG GA as reference.

13. Incorporate Mutation

Description:

Mutation operators applicable to individual objects will come into play when

implementing the copy and crossover operators. This step will work on the incorporation

of mutation into the code. Use Task 8 of the RBG GA as reference.

14. Copy

Description:

Perhaps the most basic genetic operator in the context of evolutionary programming,

“Copy” amounts to a favored random selection of an individual from the source

population, followed by a drop of the selected individual, sometimes after mutation,

into the destination population. Use Task 9 of the RBG GA as reference.

15. Crossover (2)

Description:

The genetic operator of “crossover” selects two favored individuals from the current

population, creates a new individual by taking elements of each favored individual (i.e.,

by performing crossover), possibly mutates the newly created individual, then adds it to

the new population. Use Task 10 of the RBG GA as reference.

16. The GA

Description:

The GA itself puts it all together! Use Task 11 of the RBG GA as reference… and hope to

god it works!!

(NOTE: The project would normally have had 15 tasks, but Task 1 was split into two equally simple tasks by

Graci’s request)

